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Abstract—The main objective of the present work is to study the 
design aspect of a Quadratic Optimal Regulator for a Spring Mass 
Dashpot System. In this paper the value of the State Feedback Gain 
Matrix k is obtained using quadratic optimal regulator. The result of 
the proposed controller is compared with the controller based on 
Pole Placement Technique (PPT). It is observed that the optimal 
control technique outperforms the other controller by finding a 
proper value of k which contributes towards the stability of the 
system in a marvelous way. 
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1. INTRODUCTION 

The spring mass damper can be built or represented on the 
computer instead of going to the workshop to fabricate such 
system and its performance under various conditions can also 
be observed without having to subject the real system to these 
conditions. Hence, you save materials and money, since the 
system can be used countless times. Energy is also saved 
because such system is more easily built on a computer than 
physically. Moreover, it may be very difficult to measure 
some outputs of some systems such as displacement but such 
values can be measured with ease through simulation [1]. 
Springs usually occur physically as a coil of metal, and their 
idealizations have pretty simple behavior. Compressing the 
spring will result in the spring pushing back, and stretching the 
spring will have it trying to pull back towards the start 
position, so any displacement along the axis of the spring will 
be countered by an opposite force that will tend to move the 
spring back to its original position [2]. 

A continuous system can be modelled either as a discrete- or 
lumped parameter system with varying number of degrees of 
freedom or as a continuous system with infinite number of 
degrees of freedom. The system that is being considered here 
is of on degree of freedom. The number of independent 
coordinates needed to describe the configuration of a system at 
any time during vibration defines the degrees of freedom of 
the system [1-2]. 

In recent times optimal control provides the best possible 
solution to process control problems for a give set of 

performance objectives. Optimal control and its ramifications 
have found applications in many different fields, including 
aerospace, process control robotics, bioengineering, 
economics, finance, and management science, and it continues 
to be an active research area within control theory. Optimal 
control has also found applications in speed control of hybrid 
electric vehicle [8]. Before the arrival of the digital computer 
in the 1950s, only fairly simple optimal control problems 
could be solved. The arrival of the digital computer has 
enabled the application of optimal control theory and methods 
to many complex problems. The evolution of optimal control 
was a significant achievement [9]. The design of control 
system has a unique aim to meet the desired objectives: 
specified stability, performance and robustness, by the process 
of changing a control system’s parameters. 

In the present work Quadratic Optimal Regulator is proposed 
for the stability of a spring mass dashpot system used in 
automobile suspension system. State feedback gain matrix is 
calculated using MATLAB. Using the value of gain matrix k 
calculation of step response for the given system is obtained. 
How the system responds to the initial condition is also 
obtained. The result of the proposed controller is compared 
with pole placement technique (PPT) based controller. It is 
observed that the optimal control technique outperforms the 
other controller. Organization of the paper is as follows. 
Section I deals with the introduction of this paper. Modelling 
part of the spring mass dashpot system is dealt in Section II. 
Section III discusses the state space controller. Section IV 
deals with the simulation results and discussion followed by 
conclusion in the last section. 

2. MODELING OF SPRING MASS DASHPOT 

System The spring- mass- dashpot system mounted on a Mass 
less cart is depicted in figure 1.To obtain the mathematical 
model of this system we assume that the cart is standing still 
for t < 0 and the spring-mass-dashpot system on the cart is 
also standing still for t < 0.In this system, y(t) is the 
displacement of the cart and is the input to the system. At t = 
0, the cart is moved at a constant speed, or  ẏ = constant. The 
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displacement x(t) of the mass is the output. (The displacement 
is relative to the ground). 

 

Fig. 1: Generalized block diagram of 
Spring-mass-dashpot system. 

m = Mass of the cart 

b = Viscous-friction coefficient 

k = Spring constant 

We assume that the friction force of the dashpot is 
proportional to ẋ ─ ẏ and that the spring is a linear spring; that 
is, the spring force is proportional to x ─ y. 

For translational systems, Newton’s second law states that 

ma = ∑F 

where m is a mass, a is the acceleration of the mass, and ∑F is 
the sum of the forces acting on the mass in the direction of the 
acceleration a. Applying Newton’s second law to the present 
system and noting that the cart is mass less, we obtain : 
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This equation represents a mathematical model of the system 
considered above. Taking the Laplace transform of this 
equation, assuming zero initial condition gives 

ଶݏ݉) + ݏܾ  + (ݏ)ܺ(݇ = ݏܾ)  +  (ݏ)ܻ(݇

Taking the ratio, we find the transfer function of the system to 
be 

Transfer Function = (ݏ)ܩ =  (௦)
(௦)

=  ௦ା
௦మା ௦ା

 

Next we obtain a state-space model of this system. We first 
compare the differential equation for this system 
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with the standard form 

ẍ+ ܽଵẋ+  ܽଶݔ =  ܾӱ+  ܾଵẏ + ܾଶݕ  

Thus on comparing we get 
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Now to obtain the state space representation we refer to the 
state space representation of nth-order systems of linear 
differential equations in which the forcing function involves 
derivative terms. Thus, 
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and the output equation becomes 
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or 
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Equations (1) and (2) give a state-space representation of the 
system. This is not the only state-space representation. There 
are infinitely many state-space representations for the system. 

The variables and constants are taken as : 

m = 1 kg,           Mass of the cart 

k = 2 N\m,         Spring Constant 

b = 3 Ns\m,       Viscous-friction coefficient 

Thus now the transfer function obtained is: 

(ݏ)ܩ =  ଷ௦ାଶ
௦మା ଷ௦ାଶ

  (3) 

Thus we obtain the following state-space representation: 
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ܣ =  ቂ−3 −2
1 0 ቃ  , ܤ =  ቂ10ቃ 

ܥ =  [3 ܦ          , [2 = [0]  (4) 

3. STATE SPACE ANALYSIS 

State-space approach has often been referred to as modern 
control design. The power of state variable technique is 
especially apparent when we need to design the controllers for 
system having more than one control input or sensed 

output. Fig.4 shows the state feedback control system. Here 
prominently two state space design methods based on pole 
placement and linear-quadratic regulator (LQR) for optimal 
control are considered [5]. 

 
Fig. 2: State feedback control 

A. POLE PLACEMENT TECHNIQUE 

In pole placement design we place all closed loop poles at 
desired location. The main goal of a feedback design is to 
stabilize if it is initially unstable or to improve the relative 
stability. 

Consider the linear time invariant (LTI) system with nth – 
order state differential equation. 

                  ẋ(ݐ) = (ݐ)ݔܣ  +  (5)                            (ݐ)ݑܤ 

In the state feedback design, the control signal input u is 
realized as linear combinations of all the states, that is   

(ݐ)ݑ =  −݇ଵݔଵ(ݐ)  −  ݇ଶݔଶ(ݐ)− . . . ݇ݔ(ݐ) =  (6)      (ݐ)ݔ݇− 

݇ = [݇ଵ ݇ଶ … .݇]                                       (7)           

 

K is a constant state feedback gain matrix. 

The closed loop system is describe by the state differential 
equation 

              ẋ(ݐ) = ܣ) −                                                         (8)                                 (ݐ)ݔ(݇ܤ

The characteristics equation of the closed loop system is 

ܫݏ|              − ܣ) − |(݇ܤ = 0                                     (9) 

The desired characteristics equation is 

ݏ)         − ݏ)(ଵߣ − (ଶߣ  … . ݏ) −  ) = 0                  (10)ߣ 

Where λ1, λ2….λn are desired location of closed loop pole. The 
selection of desired closed loop poles requires a proper 
balance of bandwidth, overshoot, sensitivity, control effort etc. 
The elements of k are obtained by matching the coefficient of 

(9) and (10). In pole placement design we place all closed loop 
poles at desired location. The main goal of a feedback design 
is to stabilize if it is initially unstable or to improve the 
relative stability. Consider the linear time invariant (LTI) 
system with nth–order state differential equation 

                       ẋ(ݐ) = (ݐ)ݔܣ  +  (10)                      (ݐ)ݑܤ 
In the state feedback design, the control signal input u is 
realized as linear combinations of all the states, that is 

(ݐ)ݑ =  −݇ଵݔଵ(ݐ)−  ݇ଶݔଶ(ݐ)−  ݇ݔ(ݐ) =  (11)      (ݐ)ݔ݇− 

                                            ݇ = [݇ଵ ݇ଶ ݇]   (12) 

K is a constant state feedback gain matrix. 

The closed loop system is describe by the state differential 
equation 

                       ẋ(ݐ) = ܣ) −  (13)                         (ݐ)ݔ(݇ܤ

The closed loop system is describe by the state differential 
equation 

ܫݏ |                      − ܣ) − |(݇ܤ = 0                           (14) 

The desired characteristics equation is 

ݏ)            − ݏ)(ଵߣ  − (ଶߣ  … … . . ݏ) −  )                 (15)ߣ 

Where ߣଵ,ߣଶ …  . are desired locations of closed loop polesߣ.
The selection of desired closed loop poles requires a proper 
balance of bandwidth, overshoot, sensitivity, control effort etc. 
The elements of k are obtained by matching the coefficient of 
(14) and (15).  

B. LINEAR QUADRATIC OPTIMAL CONTROLLER 

The theory of optimal control is concerned with operating a 
dynamic system at minimum cost. The case where the system 
dynamics are described by a set of linear differential equations 
and the cost is described by a quadratic functional is called the 
linear quadratic (LQR) problem. One of the main results in the 
theory is that the solution is provided by the linear-quadratic 
regulator (LQR). 

An advantage of the LQR over the pole placement technique 
is that the former provides a systematic way of the computing 
the state feedback control gain matrix. LQR [3],[4] 
demonstrates excellent performance for designing optimal 
controller. Here the control objective is to minimize the 
integral of a quadratic performance index. LQR can be used to 
design the optimal controller to ensure the optimal regulating 
and tracking performance [3]. The objective is to find the 
optimal control law that minimizes the performance index. 

ܬ =  ଵ
ଶ
∫ ݔ்ܳݔ) ஶݑ்ܴݑ +
  (16)                    ݐ݀(

Where Q and R are positive semi definite and positive 
weighting coefficient matrices respectively 
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The state feedback control low is: 

(ݐ)ݑ =  (17)                                       (ݐ)ݔ݇− 

The solution is [4] 

݇ =  ܴିଵ(18)                                           ்ܲܤ 

Where ݇ = [݇ଵ ݇ଶ] and P is the solution of Algebraic Riccati 
equation [4], [9] 

்ܲܣ           + ܣܲ − ்ܲܤଵିܴܤܲ + ܳ = 0                 (19) 

Where the matrices A and B are the coefficient matrices of the 
system, from (17) and (18) 

(ݐ)ݑ =  −ܴିଵ(20)                           (ݐ)ݔ்ܲܤ 

The equation (20) gives the final control law. 

4. SIMULATION RESULTS AND DISCUSSION 

The system shown above is observed for the response it shows 
to the initial conditions for different values of state gain matrix 
k, obtained using pole placement and quadratic optimal 
controller techniques. Moreover when step response is 
obtained using both the techniques, it is observed how useful 
optimal controller proves to be than pole placement. It is clear 
from equation (4) that the above system is stable for the values 
of mass, spring constant and viscous coefficient taken.  

It is observed that though the system is stable, the stability is 
improved significantly and the system gives favorable rise 
time, peak time, settling time, overshoot and steady state error 
using quadratic optimal controller (LQR). 
Figure 3 and 4 shows the step response for the above system 
for values of gain matrix k using optimal controller and pole 
placement respectively. 

 

Fig. 3: Step response using LQR 

 

Fig. 4 Step response using PPT 

On comparing the response characteristics of LQR and PPT 
one can easily say by looking at the graphs that response for 
LQR is far better in comparison to PPT. The table 1 shows the 
response characteristics as calculated from the MATLAB code 
[4]:  

Table 1 

Response Characteristics LQR PPT 
Rise time 23.1555 4.6062 
Settling time 331.0159 190.1034 
Settling Min 0.9061 0.6429 
Settling Max 1.2321 1.5186 
Overshoot 22.6567 136.2219 
Undershoot 0 0 
Peak 1.2321 1.5186 
Peak time 78 34 

 
It is clear that the maximum overshoot for LQR being 22.6567 
is very less as compared to PPT having an overshoot of 
136.2219. Thus response of LQR is less oscillatory and 
desirable. The Peak value and Settling Max time for PPT is 
more in comparison to LQR. Thus LQR depicts a response 
that is completely satisfactory and the system tracks the input 
also and achieves stability at the final value i.e. 1. In PPT the 
output is not settled at the final value and settles close to the 
final value. So clearly LQR proves to be far better in 
comparison to PPT and outperforms it. 

Overshoot in the system implies something   with the energy 
consumption. The presence of overshoot is similar to the 
uneven road where vehicle would consume more fuel hence 
this way optimal controller extenuates the overshoot and gives 
less oscillatory response which in turn consumes less energy. 
Now there are two kinds of control objective, servo problem 
and regulatory problem. For servo problem, we take set value 
(SV) as unit step signal and for our regulatory problem we 
take it as zero and disturbance signal of any kind need to be 
regulated efficiently. For regulatory problem also the LQR 
controller displays better performance than PPT based 
controller. 
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Fig. 5 Response to initial condition using PPT 

 

Fig. 6 Response to initial condition using LQR 

Figure 5 and figure 6 show the response to the initial condition 
for PPT and LQR respectively. 

The initial condition considered is: 

(0)ݔ                                 =  ቂ10ቃ                                     (21) 

It is clear from figure 5 that graphs for state variable x1 and x2 
are similar as the value of k obtained from the pole placement 
technique is same i.e. k=[2 2]. On the other hand the value of 
state feedback gain matrix for optimal controller is k=[4.5 12] 
i.e. different and thus the graphs for state variables x1 and x2 
are different accordingly. 

 

 

 

 

 

 

5. CONCLUSION 

In this work a spring mass dashpot system is proposed. Here 
Quadratic Optimal controller’s (LQR) design aspect based on 
state feedback gain matrix is investigated along with Pole 
Placement (PPT) to see that using which technique the 
stability of the system is improved. In this paper LQR for 
analysis of heuristic implications of optimal control is 
proposed and is compared with PPT technique. Also the 
response to initial conditions is presented for both the 
techniques. Looking at the step response characteristics we 
observe that LQR has much less overshoot compared to PPT 
and hence provides less oscillatory response with better 
stability. System tracks the input better using LQR whereas 
using PPT it settles but fails to track input properly. Settling 
max for LQR is less. Thus it is observed that optimal control 
proves to be a better choice and improves system stability in 
an amazing manner. 
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